Visitor

Saturday, April 7, 2012

ANIMAL NAVIGATION




Jeremiah 8:7

Viewing the 1769 King James Version. Click to switch to 1611 King James Version of Jeremiah 8:7

Yea, the stork in the heaven knoweth her appointed times; and the turtle and the crane and the swallow observe the time of their coming; but my people know not the judgment of the LORD.




Orientation and navigation


The routes of satellite tagged Bar-tailed Godwits migrating north from New Zealand. This species has the longest known non-stop migration of any species, up to 10,200 km (6,300 mi).
Navigation is based on a variety of senses. Many birds have been shown to use a sun compass. Using the sun for direction involves the need for making compensation based on the time. Navigation has also been shown to be based on a combination of other abilities including the ability to detect magnetic fields (magnetoception), use visual landmarks as well as olfactory cues.[25]
Long distance migrants are believed to disperse as young birds and form attachments to potential breeding sites and to favourite wintering sites. Once the site attachment is made they show high site-fidelity, visiting the same wintering sites year after year.[26]
The ability of birds to navigate during migrations cannot be fully explained by endogenous programming, even with the help of responses to environmental cues. The ability to successfully perform long-distance migrations can probably only be fully explained with an accounting for the cognitive ability of the birds to recognize habitats and form mental maps. Satellite tracking of day migrating raptors such as Ospreys and Honey Buzzards has shown that older individuals are better at making corrections for wind drift.[27]
As the circannual patterns indicate, there is a strong genetic component to migration in terms of timing and route, but this may be modified by environmental influences. An interesting example where a change of migration route has occurred because of such a geographical barrier is the trend for some Blackcaps in central Europe to migrate west and winter in Britain rather than cross the Alps.
Migratory birds may use two electromagnetic tools to find their destinations: one that is entirely innate and another that relies on experience. A young bird on its first migration flies in the correct direction according to the Earth's magnetic field, but does not know how far the journey will be. It does this through a radical pair mechanism whereby chemical reactions in special photo pigments sensitive to long wavelengths are affected by the field. Note that although this only works during daylight hours, it does not use the position of the sun in any way. At this stage the bird is similar to a boy scout with a compass but no map, until it grows accustomed to the journey and can put its other facilities to use. With experience they learn various landmarks and this "mapping" is done by magnetites in the trigeminal system, which tell the bird how strong the field is. Because birds migrate between northern and southern regions, the magnetic field strengths at different latitudes let it interpret the radical pair mechanism more accurately and let it know when it has reached its destination.[28] More recent research has found a neural connection between the eye and "Cluster N", the part of the forebrain that is active during migrational orientation, suggesting that birds may actually be able to see the magnetic field of the earth.

No comments:

Post a Comment