The Principles of Hematopoietic stem cell using Blood 

Hebrew 9:22
" And almost all things are by the law purged with blood;

With more than 50 years of experience studying blood-forming stem cells called hematopoietic stem cells, scientists have developed sufficient understanding to actually use them as a therapy. Currently, no other type of stem cell, adult, fetal or embryonic, has attained such status. Hematopoietic stem cell transplants are now routinely used to treat patients with cancers and other disorders of the blood and immune systems. Recently, researchers have observed in animal studies that hematopoietic stem cells appear to be able to form other kinds of cells, such as muscle, blood vessels, and bone. If this can be applied to human cells, it may eventually be possible to use hematopoietic stem cells to replace a wider array of cells and tissues than once thought.
Despite the vast experience with hematopoietic stem cells, scientists face major roadblocks in expanding their use beyond the replacement of blood and immune cells. First, hematopoietic stem cells are unable to proliferate (replicate themselves) and differentiate (become specialized to other cell types) in vitro (in the test tube or culture dish). Second, scientists do not yet have an accurate method to distinguish stem cells from other cells recovered from the blood or bone marrow. Until scientists overcome these technical barriers, they believe it is unlikely that hematopoietic stem cells will be applied as cell replacement therapy in diseases such as diabetes, Parkinson's Disease, spinal cord injury, and many others.


Blood cells are responsible for constant maintenance and immune protection of every cell type of the body. This relentless and brutal work requires that blood cells, along with skin cells, have the greatest powers of self-renewal of any adult tissue.
The stem cells that form blood and immune cells are known as hematopoietic stem cells (HSCs). They are ultimately responsible for the constant renewal of blood—the production of billions of new blood cells each day. Physicians and basic researchers have known and capitalized on this fact for more than 50 years in treating many diseases. The first evidence and definition of blood-forming stem cells came from studies of people exposed to lethal doses of radiation in 1945.
Basic research soon followed. After duplicating radiation sickness in mice, scientists found they could rescue the mice from death with bone marrow transplants from healthy donor animals. In the early 1960s, Till and McCulloch began analyzing the bone marrow to find out which components were responsible for regenerating blood. They defined what remain the two hallmarks of an HSC: it can renew itself and it can produce cells that give rise to all the different types of blood cells (see Chapter 4. The Adult Stem Cell).

What Is a Hematopoietic Stem Cell?

A hematopoietic stem cell is a cell isolated from the blood or bone marrow that can renew itself, can differentiate to a variety of specialized cells, can mobilize out of the bone marrow into circulating blood, and can undergo programmed cell death, called apoptosis—a process by which cells that are detrimental or unneeded self-destruct.
A major thrust of basic HSC research since the 1960s has been identifying and characterizing these stem cells. Because HSCs look and behave in culture like ordinary white blood cells, this has been a difficult challenge and this makes them difficult to identify by morphology (size and shape). Even today, scientists must rely on cell surface proteins, which serve, only roughly, as markers of white blood cells.
Identifying and characterizing properties of HSCs began with studies in mice, which laid the groundwork for human studies. The challenge is formidable as about 1 in every 10,000 to 15,000 bone marrow cells is thought to be a stem cell. In the blood stream the proportion falls to 1 in 100,000 blood cells. To this end, scientists began to develop tests for proving the self-renewal and the plasticity of HSCs.
The "gold standard" for proving that a cell derived from mouse bone marrow is indeed an HSC is still based on the same proof described above and used in mice many years ago. That is, the cells are injected into a mouse that has received a dose of irradiation sufficient to kill its own blood-producing cells. If the mouse recovers and all types of blood cells reappear (bearing a genetic marker from the donor animal), the transplanted cells are deemed to have included stem cells.
These studies have revealed that there appear to be two kinds of HSCs. If bone marrow cells from the transplanted mouse can, in turn, be transplanted to another lethally irradiated mouse and restore its hematopoietic system over some months, they are considered to be long-term stem cells that are capable of self-renewal. Other cells from bone marrow can immediately regenerate all the different types of blood cells, but under normal circumstances cannot renew themselves over the long term, and these are referred to as short-term progenitor or precursor cells. Progenitor or precursor cells are relatively immature cells that are precursors to a fully differentiated cell of the same tissue type. They are capable of proliferating, but they have a limited capacity to differentiate into more than one cell type as HSCs do. For example, a blood progenitor cell may only be able to make a red blood cell (see Figure 5.1. Hematopoietic and Stromal Stem Cell Differentiation).
Hematopoietic and Stromal Stem Cell Differentiation
Figure 5.1. Hematopoietic and Stromal Stem Cell Differentiation.
(© 2001 Terese Winslow, Lydia Kibiuk)
Harrison et al. write that short-term blood-progenitor cells in a mouse may restore hematopoiesis for three to four months . The longevity of short-term stem cells for humans is not firmly established. A true stem cell, capable of self-renewal, must be able to renew itself for the entire lifespan of an organism. It is these long-term replicating HSCs that are most important for developing HSC-based cell therapies. Unfortunately, to date, researchers cannot distinguish the long-term from the short-term cells when they are removed from the bloodstream or bone marrow.
The central problem of the assays used to identify long-term stem cells and short-term progenitor cells is that they are difficult, expensive, and time-consuming and cannot be done in humans. A few assays are now available that test cells in culture for their ability to form primitive and long-lasting colonies of cells, but these tests are not accepted as proof that a cell is a long-term stem cell. Some genetically altered mice can receive transplanted human HSCs to test the cells' self-renewal and hematopoietic capabilities during the life of a mouse, but the relevance of this test for the cells in humans—who may live for decades—is open to question.
The difficulty of HSC assays has contributed to two mutually confounding research problems: definitively identifying the HSC and getting it to proliferate, or increase its numbers, in a culture dish. More rapid research progress on characterizing and using HSCs would be possible if they could be readily grown in the laboratory. Conversely, progress in identifying growth conditions suitable for HSCs and getting the cells to multiply would move more quickly if scientists could reliably and readily identify true HSCs.

Can Cell Markers Be Used to Identify Hematopoietic Stem Cells?

HSCs have an identity problem. First, the ones with long-term replicating ability are rare. Second, there are multiple types of stem cells. And, third, the stem cells look like many other blood or bone marrow cells. So how do researchers find the desired cell populations? The most common approach is through markers that appear on the surface of cells. (For a more detailed discussion, see Appendix E.i. Markers: How Do Researchers Use Them to Identify Stem Cells?) These are useful, but not perfect tools for the research laboratory.
In 1988, in an effort to develop a reliable means of identifying these cells, Irving Weissman and his collaborators focused attention on a set of protein markers on the surface of mouse blood cells that were associated with increased likelihood that the cell was a long-term HSC . Four years later, the laboratory proposed a comparable set of markers for the human stem cell . Weissman proposes the markers shown in Table 5.1 as the closest markers for mouse and human HSCs.

The most well-established and widely used stem cell treatment is the transplantation of blood stem cells to treat diseases and conditions of the blood and immune system, or to restore the blood system after treatments for specific cancers. The US National Marrow Donor Program has a full list of diseases treatable by blood stem cell transplant. More than 26,000 patients are treated with blood stem cells in Europe each year.

Since the 1970s, skin stem cells have been used to grow skin grafts for patients with severe burns on very large areas of the body. Only a few clinical centres are able to carry out this treatment and it is usually reserved for patients with life-threatening burns. It is also not a perfect solution: the new skin has no hair follicles or sweat glands. Research aimed at improving the technique is ongoing.

Currently, these are the only stem cell therapies that have been thoroughly established as safe and effective treatments. Some other applications of stem cells are being investigated in clinical trials, including the use of stem cells to regenerate damaged tissues – such as heart, skin, bone, spinal cord, liver, pancreas and cornea – or to treat blood or solid-organ cancers. The majority of these trials are using mesenchymal stem cells, which are derived from sources such as fat tissue, bone marrow and connective tissue. A small proportion of the trials are using blood stem cells.

Among the most advanced clinical trials are those that aim to treat certain bone, skin and corneal diseases or injuries with a graft of tissue grown from stem cells taken from these organs. For example, stem cells from the eye can be used to grow a new cornea for patients with certain kinds of eye damage. This has already been shown to be safe and effective in early stage trials. However, further studies with larger numbers of patients must be carried out before this therapy can be approved by regulatory authorities for widespread use in Europe.


Popular Posts