GEYSER
Job 38:16
Viewing the King James Version. Click to switch to 1611 King James Version of Job 38:16.
Hast thou entered into the springs of the sea?
A geyser (US /ˈɡaɪzər/; UK /ˈɡiːzə/) is a spring characterized by intermittent discharge of water ejected turbulently and accompanied by avapour phase (steam). The word geyser comes from Geysir, the name of an erupting spring at Haukadalur, Iceland; that name, in turn, comes from the Icelandic verb geysa, "to gush", the verb itself from Old Norse.
The formation of geysers is due to particular hydrogeological conditions, which exist in only a few places on Earth, so they are a fairly rare phenomenon. Generally all geyser field sites are located near active volcanic areas, and the geyser effect is due to the proximity of magma. Generally, surface water works its way down to an average depth of around 2,000 metres (6,600 ft) where it contacts hot rocks. The resultant boiling of the pressurized water results in the geyser effect of hot water and steam spraying out of the geyser's surface vent (a hydrothermal explosion).
About a thousand known geysers exist worldwide, roughly half of which are in Yellowstone National Park, Wyoming, United States. A geyser's eruptive activity may change or cease due to ongoing mineral deposition within the geyser plumbing, exchange of functions with nearby hot springs, earthquake influences, and human intervention.
Jet-like eruptions, often referred to as geysers, have been observed on several of the moons of the outer solar system. Due to the low ambient pressures, these eruptions consist of vapor without liquid; they are made more easily visible by particles of dust and ice carried aloft by the gas. Water vapor jets have been observed near the south pole of Saturn's moon Enceladus, while nitrogen eruptions have been observed on Neptune's moon Triton. There are also signs of carbon dioxide eruptions from the southern polar ice cap of Mars. In the latter two cases, instead of being driven by geothermal energy, the eruptions seem to rely on solar heating via a solid-state greenhouse effect.
Comments
Post a Comment